THALES

More Autonomy for Aviation

French – Norwegian Forum Nov 20th, 2019 – Toulouse – B612

Philippe BENQUET - VP R&T Avionics

Global societal trends are pervasive within aviation

Growing demand, high customer expectations

• Consumer goods, medical care, Everything-as-a-Service

• Google, Amazon, Facebook, Apple, Microsoft, Intel

Decarbonisation is environmental biggest challenge

Political pace is faster than science & technology

• Battery power density and H₂ propulsion are good examples

Safety and security remains societal priorities

- Human Machine teaming becomes critical
- Cyber resilience, privacy, data protection for security

Digital breakthrough

- Connectivity / IoT, smart devices, cybersecurity
- Big Data, Machine Learning, Artificial Intelligence
- Virtual / Artificial Reality

Automation

- 19th Century: Blue Collar → Machines
- 21st Century: White Collar → AI

Pax
2018 4.3 billion
2035 8 billion

Key enabling technologies

- We are now at the convergence point of several new technologies:
 - Materials manufacturing
 - Communication technology
 - Hybrid electrical systems, electrical propulsion
 - Digitalization Data Analytics Artificial Intelligence Cybersecurity ...

Since 2016, Thales has invested ~ 7 B\$ in these digital technologies

From evolution... to... disruption

The platforms and the overarching systems are becoming connected, intelligent, safe, greener ... autonomous

The new challenges: Drones, UAM & air taxis, autonomous & greener a/c

- The future fleet will be more diverse than it is today, and a growth of personal air and unmanned vehicles is be expected
 - Drones, RPAS, etc. will pave the way of increased commercial aircraft automation and ultimately to autonomous aircraft
 - UTM may disrupt ATM concepts, technologies and business models
 - UAM impose immediate jump to all electric or hybrid propulsion solutions
- Automation of aircraft and airport will induce reduced crew / controller operations

THALES

Aviation at the dawn of drastic changes – Societal Challenges

"More electrical aircraft" (hybrid/electrical propulsion)

- → Decarbonisation
- "More autonomous aircraft" (Automation / Secured Connectivity / AI) -> Safety, Affordability

2030

2035

Air **Transport**

Emergency e-Engine Augmented pilots

MEA Reduced crew ops

Single pilot ops

Hybrid propulsion Electrical propulsion **Autonomy**

Eyes-Out, connectivity **Data-driven services**

HVDC<1 kV, 120 kW HVDC~1kV, High Pw Density High-integrity PTF **Pilot** assistant

HVDC>1 kV **Autonomous PTF Artificial copilot**

New techno Multi-sensor PTF **Multi-sensor fusion**

Drones

Long-distance operations

10-7

Urban logistics

Urban Air Mobility

10-10

Both roadmaps are two sides of the same coin

THALES

Two autonomy strategies – Benchmark with automotive market

Thales AVS/FLX Vision & Challenges

Provide SAFE, CONNECTED and SECURED avionics solutions for all our value chain, leverage DIGITAL for operations EFFICIENCY and future AUTONOMY

ENVIRONMENT

- OEM consolidation, insourcing, services
- Connectivity, Decarbonation, Autonomy
- Competitiveness, Safety & CyberSecurity

G. Faury - Sep 17th, 2019

 « Our objective is to be able to Enter into Service in 2035 at the latest an aircraft capable to reach carbon neutrality of Air Transport by 2050. In this context, a brand new very decarbonated aircraft will be launch in the second half of next decade (2025-2030) including Single Pilot Operations technologies, latest connectivity technologies and produced with a very automated industrial tool »

Main Challenges to More Autonomy

« Acting »

Safety Critical Autonomy Platform Extended high integrity flight control platform

- Connected high performance service platform
 - Distributed ground / on-board, real time
 - Small on-board footprint Cloud platform
 - Seamless avionics / open world cooperation
 - Open World mission related data & services
 - Continuous value delivery

« Perceiving / Deciding »

Pilot Assistant Artificial Copilot

- Provide Suggestions / Recommendations
- Anticipate needs
- Advertise intention Don't disrupt others actions
- Understand implicit
- Trustworthy

« Sensing »

Multi-sensor Fusion Platform

- Perception sensors (camera, radar, lidar, ...)
- Nav sensors (IMU, GNSS, Anti-jamming, Air Data, Odometers, ...)
- Sensor fusion for high integrity localization, visionbased navigation, detect & avoid, trajectory management

Synthesis

Decarbonization and Safety are the highest priorities

- Decarbonation has a detrimental impact on competitiveness
- Human-Machine teaming is becoming a safety issue

More autonomy is a key contributor to:

- Systems that reduce emissions
 - ✓ Flight Management (FMS) optimizing "green" trajectories, flying in formation, improving ground ops
 - ✓ Electrical Generation & Conversion, modular power electronics
 - ✓ Minimizing SWaP (Size, Weight & Power)
- Systems that reduce cost of operations, enabling expensive decarbonisation technologies w/o competitiveness impact
 - ✓ Single pilot operations and autonomous operations
- Systems that improve safety through new automatisms and new ways of operating / integrating into the air space
- ✓ New **flight controls** and **trajectory management** techniques
 - ✓ Pilot assistant and Artificial Copilot
 - ✓ New multi-sensor platform for vision-based navigation

autonomy

THALES

